2000 - 2002 Terra CRS/SSF Consistency of SARB CRS Calculations and Observations at TOA.

F. Rose, T. Charlock, S.Kato, D.Rutan, Z.Jin L.Coleman, T.Caldwell, S.Zentz

> 2nd CERES-II Science Team Meeting Hospitality House, Williamsburg, VA Nov 2-4, 2004

CRS Sarb Product Combines

- MOA
 - Geos4 :Temperature(z), Humidity(z)
 - Smoba o3(z)
- SSF
 - Cloud Properties
 - Fraction, Optical depth, phase, particle size, height
 - TOA Fluxes
 - (SW,LW,Window), Radiances (LW,Window)
 - Clear Sky Aerosols (Modis)
- Match Assimilation
 - Aerosol constituents
 - Cloudy Sky Aerosols
- FuLiou Radiative Transfer
 - (Clear, Cloudy, Pristine Clear, Pristine Cloudy)

FuLiou Radiative Transfer Model

- Gamma weighted 2-Stream (SW), 2/4 Stream (LW)
 - Inhomogeneous clouds
- 29 Bands: 15 SW, 14 LW , 3 of 14 LW in WN
- Shortwave: (0.17 4.0)um (2500-57000cm-1)
 - Hitran 2000 (H20) (O₂,CO₂,CH₄) Fixed: H₂0 continuum
 - JPL(1994) O₃ uv ,WMO(1985) O₃ vis
- LW (0-2850cm-1) (3.5um Infinity)
 - H₂0 ,CO₂ ,O₃ ,N₂0 ,CH₄ ,CFCs, H20 continuum)
- Water Cloud Optical Properties (Y.Hu)
- Ice Cloud Optical properties (Q.Fu 1993, Dge)
- Aerosol Optical Properties
 - OPAC, Tegin&Lacis,D'Almedia
- 10 visible SW bands reworked for O₃ and rayleigh in mid 90's

CRS – SSF Untuned FuLiou Model minus CERES Observed

Toa Flux Bias Drift

CRS Based FOV Monthly Mean QC Report Statistics

- Simple FOV weighted mean ,24hr avg most cases
- NOT representative of Equal Area Global domain!
- CRS (FuLiou Untuned) minus CERES Observations
- Subsets containing land & snow use CERES observations indirectly for Untuned model input of surface albedo retrieval
- Oceans independent of CERES observations

Shortwave TOA Flux

Longwave TOA Flux

Window TOA Flux

Longwave Radiance [Wm-2sr-1]

Filtered Window Radiance [Wm-2sr-1]

FSW Equal Area Results

- Ceres Equal Area Grid
 - -Instantaneous Fovs gridded to ~1deg
- Monthly Averaged
 - -No diurnal modeling
- •Mostly Edition 2A Fm1, 2 partial months of ED2B
- •Normalization by multi-year monthly means to Emphasize inter-annual variability

All Sky

- •FM1 ED2A
- •FM2 ED2A
- FM2 ED2B
- FM1 ED2B

Ocean

- •FM1 ED2A
- •FM2 ED2A
- FM2 ED2B
- FM1 ED2B

Ceres Surface Validation Sites

- Untuned SW Bias
 - TOA
 - Surface
- Edition 2A CRS
- Small Sample Size

Untuned CRS – CERES Observed SW Toa Flux Bias Causes?

Typical TOA Albedo Bias Occurrence

But not exclusively

- [Untuned Observed] Positive, Model too reflective
- Overcast Water Clouds
- Moderate Optical Depths Tau=~7 to ~20
- Large Cloud particles Re > 15 microns
- Regions of large aerosol optical depth
- Inhomogeneous clouds

Toa Albedo Bias Causes

- Double treatment of aerosols
 - Large Tau Aerosols retrieved as "clouds"
 - while MATCH aerosols used during cloudy sky conditions.
- Multi-Layer clouds retrieved as single layer(?)
 - Thin "sub-visual" Cirrus (tau < 0.2) overlapping overcast stratus
 - Increases retrieved low cloud altitude, less H20 absorption
- Cloud 3D effects cloud top "bumps" (?)
 - Less reflectance at oblique angles not modeled well by PP RT.
- Broadband Cloud Optics(? small)
 - Correlation of cloud optics and gas absorption in some bands

TOA SW Untuned-Observed and Aerosol

Count = 44012

Area of large positive SW bias off west coast of Africa coincides with Saharan Dust Aerosols over the Ocean with τ >0.4

Stddev = 0.16 Count = 44012

Thin Cirrus Overlapping Overcast Water Clouds

Missed Cirrus Effect

Mid-latitude Summer, Cos Sol= 0.80, Ocean Surface Albedo

- Case 1: thin cirrus missed
- No cirrus retrieved
- Water Cloud

$$- \tau = 10$$
. Re = 20

- 1:2 km
- OLR 264.9
- Albedo 0.3885

- Case 2: thin cirrus retrieved
- Cirrus: $\tau = 0.065$ De=60 12:13km
- Water Cloud

$$\tau = 10$$
. Re = 20.

- 0:1 km
- OLR 264.9
- Albedo 0.3812
- 1. Catching cirrus would lower underlying water cloud height
- 2. Compensates OLR decrease due to cirrus
- 3. Increased SW absorption

due to increased water vapor lower in atmosphere

Result: Lower TOA albedo by (-0.007), same OLR

1D Vs 3D

- Monte Carlo simulations show decreased reflectance of overcast clouds for 3D compared to 1D
- Loeb & Coakley
 - Fig 19 J.Climate Feb 1998

Fig. 19. Monte Carlo model simulations of 3D and 1D reflectances and μ for overcast cloud fields with single scattering albedos (ω_o) of (a) 1.0 and (b) 0.9.

3D Simulation By S.Kato

View Zenith Vs LW Flux Bias Untuned-Observed

- FM1 RAPS day
- Larger Positive error at oblique angle
 - Missing Cirrus?
 - UTRH too low?
- Less dependence too MODIS view angle
- Day Positive Bias
- Night Negative

CRS PreED2b ::Overcast Ocean Mar 01 2000

View Zenith and TOA Albedo Bias

- FM1-RAPS
 - Single day
- Weak evidence consistent with:
 - Undetected cirrus?
 - Small scale 3D effects??

CRS PreED2b ::Overcast Ocean Mar 01 2000

Conclusion

- Drift in Shortwave Toa bias
 - Consistent with CERES dimming
 - ~ 0.47 Wm-2 yr-1 or 0.37% yr-1
- Drift in Longwave Toa bias
 - ~ 0.38 Wm-2 yr-1 or 0.16 % yr-1
 - Mostly from Clear Sky Land.
- Untuned Shortwave Toa bias worst over Overcast Ocean.

CRS Longwave TOA Bias

- Large day vs night differences
 - Cloud Fraction of High Cloud overestimated at night?
- Inconsistency in regions where surface temperature inversions occur
 - Cloud retrieval assume ~7 K/km lapse rate
 - Near surface over ocean
 - Sarb RT calculations use Geos4 supplied temperature profiles

TOA LW Untuned-Observed

(UT-OBS) LW TOA CER_FSWB_Terra-FM2-MODIS_Edition2B_017018 200003,all

CRS PreED2b ::Overcast Ocean Mar 01 2000

DAY

(UT-OBS) LW TOA CER_FSWB_Terra-FM2-MODIS_Edition2B_017018 200003.day

Cloud % High
CER_FSWB_Terra-FM2-MODIS_Edition2B_017018
200003,day

Count = 44012

Night

(UT-OBS) LW TOA CER_FSWB_Terra-FM2-MODIS_Edition2B_017018 200003,nit

Cloud % High CER_FSWB_Terra-FM2-MODIS_Edition2B_017018 200003,nit

Count = 44012

Spare Slides

SW Albedo

Land

- •FM1 ED2A
- •FM2 ED2A
- FM2 ED2B
- FM1 ED2B

Cryosphere

- •FM1 ED2A
- •FM2 ED2A
- FM2 ED2B
- FM1 ED2B

Desert

- •FM1 ED2A
- •FM2 ED2A
- FM2 ED2B
- FM1 ED2B

